Rabu, 24 November 2010

computer

computer is a programmable machine that receives input, stores and manipulates data, and provides output in a useful format.
While a computer can, in theory, be made out of almost anything (see misconceptions section), and mechanical examples of computers have existed through much of recorded human history, the first electronic computers were developed in the mid-20th century (1940–1945). Originally, they were the size of a large room, consuming as much power as several hundred modern personal computers (PCs).[1] Modern computers based on integrated circuits are millions to billions of times more capable than the early machines, and occupy a fraction of the space.[2] Simple computers are small enough to fit into mobile devices, and can be powered by a small battery. Personal computers in their various forms are icons of the Information Age and are what most people think of as "computers". However, the embedded computers found in many devices from MP3 players to fighter aircraft and from toys to industrial robots are the most numerous.

Contents

[hide]

History of computing

The first use of the word "computer" was recorded in 1613, referring to a person who carried out calculations, or computations, and the word continued to be used in that sense until the middle of the 20th century. From the end of the 19th century onwards though, the word began to take on its more familiar meaning, describing a machine that carries out computations.[3]

Limited-function ancient computers

The Jacquard loom, on display at the Museum of Science and Industry in Manchester, England, was one of the first programmable devices.
The history of the modern computer begins with two separate technologies—automated calculation and programmability—but no single device can be identified as the earliest computer, partly because of the inconsistent application of that term. Examples of early mechanical calculating devices include the abacus, the slide rule and arguably the astrolabe and the Antikythera mechanism, an ancient astronomical computer built by the Greeks around 80 BC.[4] The Greek mathematician Hero of Alexandria (c. 10–70 AD) built a mechanical theater which performed a play lasting 10 minutes and was operated by a complex system of ropes and drums that might be considered to be a means of deciding which parts of the mechanism performed which actions and when.[5] This is the essence of programmability.
The "castle clock", an astronomical clock invented by Al-Jazari in 1206, is considered to be the earliest programmable analog computer.[6][verification needed] It displayed the zodiac, the solar and lunar orbits, a crescent moon-shaped pointer travelling across a gateway causing automatic doors to open every hour,[7][8] and five robotic musicians who played music when struck by levers operated by a camshaft attached to a water wheel. The length of day and night could be re-programmed to compensate for the changing lengths of day and night throughout the year.[6]
The Renaissance saw a re-invigoration of European mathematics and engineering. Wilhelm Schickard's 1623 device was the first of a number of mechanical calculators constructed by European engineers, but none fit the modern definition of a computer, because they could not be programmed.

First general-purpose computers

In 1801, Joseph Marie Jacquard made an improvement to the textile loom by introducing a series of punched paper cards as a template which allowed his loom to weave intricate patterns automatically. The resulting Jacquard loom was an important step in the development of computers because the use of punched cards to define woven patterns can be viewed as an early, albeit limited, form of programmability.
It was the fusion of automatic calculation with programmability that produced the first recognizable computers. In 1837, Charles Babbage was the first to conceptualize and design a fully programmable mechanical computer, his analytical engine.[9] Limited finances and Babbage's inability to resist tinkering with the design meant that the device was never completed.
In the late 1880s, Herman Hollerith invented the recording of data on a machine readable medium. Prior uses of machine readable media, above, had been for control, not data. "After some initial trials with paper tape, he settled on punched cards ..."[10] To process these punched cards he invented the tabulator, and the keypunch machines. These three inventions were the foundation of the modern information processing industry. Large-scale automated data processing of punched cards was performed for the 1890 United States Census by Hollerith's company, which later became the core of IBM. By the end of the 19th century a number of technologies that would later prove useful in the realization of practical computers had begun to appear: the punched card, Boolean algebra, the vacuum tube (thermionic valve) and the teleprinter.
During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation. However, these were not programmable and generally lacked the versatility and accuracy of modern digital computers.
Alan Turing is widely regarded to be the father of modern computer science. In 1936 Turing provided an influential formalisation of the concept of the algorithm and computation with the Turing machine, providing a blueprint for the electronic digital computer.[11] Of his role in the creation of the modern computer, Time magazine in naming Turing one of the 100 most influential people of the 20th century, states: "The fact remains that everyone who taps at a keyboard, opening a spreadsheet or a word-processing program, is working on an incarnation of a Turing machine".[11]
The Zuse Z3, 1941, considered the world's first working programmable, fully automatic computing machine.
The ENIAC, which became operational in 1946, is considered to be the first general-purpose electronic computer.
EDSAC was one of the first computers to implement the stored program (von Neumann) architecture.
Die of an Intel 80486DX2 microprocessor (actual size: 12×6.75 mm) in its packaging.

The Atanasoff–Berry Computer (ABC) was among the first fully electronic digital binary computing devices. Conceived in 1937 by Iowa State College physics professor John Atanasoff, and built with the assistance of graduate student Clifford Berry[12], the machine was not programmable in the modern sense, being designed only to solve systems of linear equations. The computer did employ parallel computation. A 1973 court ruling in a patent dispute found that the patent for the 1946 ENIAC computer derived from the Atanasoff–Berry Computer.
The inventor of the program-controlled computer was Konrad Zuse, who built the first working computer in 1941 and later in 1955 the first computer based on magnetic storage.[13]
George Stibitz is internationally recognized as a father of the modern digital computer. While working at Bell Labs in November 1937, Stibitz invented and built a relay-based calculator he dubbed the "Model K" (for "kitchen table", on which he had assembled it), which was the first to use binary circuits to perform an arithmetic operation. Later models added greater sophistication including complex arithmetic and programmability.[14]
A succession of steadily more powerful and flexible computing devices were constructed in the 1930s and 1940s, gradually adding the key features that are seen in modern computers. The use of digital electronics (largely invented by Claude Shannon in 1937) and more flexible programmability were vitally important steps, but defining one point along this road as "the first digital electronic computer" is difficult.Shannon 1940 Notable achievements include.
  • Konrad Zuse's electromechanical "Z machines". The Z3 (1941) was the first working machine featuring binary arithmetic, including floating point arithmetic and a measure of programmability. In 1998 the Z3 was proved to be Turing complete, therefore being the world's first operational computer.[15]
  • The non-programmable Atanasoff–Berry Computer (commenced in 1937, completed in 1941) which used vacuum tube based computation, binary numbers, and regenerative capacitor memory. The use of regenerative memory allowed it to be much more compact than its peers (being approximately the size of a large desk or workbench), since intermediate results could be stored and then fed back into the same set of computation elements.
  • The secret British Colossus computers (1943),[16] which had limited programmability but demonstrated that a device using thousands of tubes could be reasonably reliable and electronically reprogrammable. It was used for breaking German wartime codes.
  • The Harvard Mark I (1944), a large-scale electromechanical computer with limited programmability.[17]
  • The U.S. Army's Ballistic Research Laboratory ENIAC (1946), which used decimal arithmetic and is sometimes called the first general purpose electronic computer (since Konrad Zuse's Z3 of 1941 used electromagnets instead of electronics). Initially, however, ENIAC had an inflexible architecture which essentially required rewiring to change its programming.

Stored-program architecture

Several developers of ENIAC, recognizing its flaws, came up with a far more flexible and elegant design, which came to be known as the "stored program architecture" or von Neumann architecture. This design was first formally described by John von Neumann in the paper First Draft of a Report on the EDVAC, distributed in 1945. A number of projects to develop computers based on the stored-program architecture commenced around this time, the first of these being completed in Great Britain. The first working prototype to be demonstrated was the Manchester Small-Scale Experimental Machine (SSEM or "Baby") in 1948. The Electronic Delay Storage Automatic Calculator (EDSAC), completed a year after the SSEM at Cambridge University, was the first practical, non-experimental implementation of the stored program design and was put to use immediately for research work at the university. Shortly thereafter, the machine originally described by von Neumann's paper—EDVAC—was completed but did not see full-time use for an additional two years.
Nearly all modern computers implement some form of the stored-program architecture, making it the single trait by which the word "computer" is now defined. While the technologies used in computers have changed dramatically since the first electronic, general-purpose computers of the 1940s, most still use the von Neumann architecture.
Beginning in the 1950s, Soviet scientists Sergei Sobolev and Nikolay Brusentsov conducted research on ternary computers, devices that operated on a base three numbering system of −1, 0, and 1 rather than the conventional binary numbering system upon which most computers are based. They designed the Setun, a functional ternary computer, at Moscow State University. The device was put into limited production in the Soviet Union, but supplanted by the more common binary architecture.

Semiconductors and microprocessors

Computers using vacuum tubes as their electronic elements were in use throughout the 1950s, but by the 1960s had been largely replaced by transistor-based machines, which were smaller, faster, cheaper to produce, required less power, and were more reliable. The first transistorised computer was demonstrated at the University of Manchester in 1953.[18] In the 1970s, integrated circuit technology and the subsequent creation of microprocessors, such as the Intel 4004, further decreased size and cost and further increased speed and reliability of computers. By the late 1970s, many products such as video recorders contained dedicated computers called microcontrollers, and they started to appear as a replacement to mechanical controls in domestic appliances such as washing machines. The 1980s witnessed home computers and the now ubiquitous personal computer. With the evolution of the Internet, personal computers are becoming as common as the television and the telephone in the household[citation needed].
Modern smartphones are fully programmable computers in their own right, and as of 2009 may well be the most common form of such computers in existence[citation needed].

Programs

The defining feature of modern computers which distinguishes them from all other machines is that they can be programmed. That is to say that some type of instructions (the program) can be given to the computer, and it will carry process them. While some computers may have strange concepts "instructions" and "output" (see quantum computing), modern computers based on the von Neumann architecture are often have machine code in the form of an imperative programming language.
In practical terms, a computer program may be just a few instructions or extend to many millions of instructions, as do the programs for word processors and web browsers for example. A typical modern computer can execute billions of instructions per second (gigaflops) and rarely makes a mistake over many years of operation. Large computer programs consisting of several million instructions may take teams of programmers years to write, and due to the complexity of the task almost certainly contain errors.

Stored program architecture

A 1970s punched card containing one line from a FORTRAN program. The card reads: "Z(1) = Y + W(1)" and is labelled "PROJ039" for identification purposes.
This section applies to most common RAM machine-based computers.
In most cases, computer instructions are simple: add one number to another, move some data from one location to another, send a message to some external device, etc. These instructions are read from the computer's memory and are generally carried out (executed) in the order they were given. However, there are usually specialized instructions to tell the computer to jump ahead or backwards to some other place in the program and to carry on executing from there. These are called "jump" instructions (or branches). Furthermore, jump instructions may be made to happen conditionally so that different sequences of instructions may be used depending on the result of some previous calculation or some external event. Many computers directly support subroutines by providing a type of jump that "remembers" the location it jumped from and another instruction to return to the instruction following that jump instruction.
Program execution might be likened to reading a book. While a person will normally read each word and line in sequence, they may at times jump back to an earlier place in the text or skip sections that are not of interest. Similarly, a computer may sometimes go back and repeat the instructions in some section of the program over and over again until some internal condition is met. This is called the flow of control within the program and it is what allows the computer to perform tasks repeatedly without human intervention.
Comparatively, a person using a pocket calculator can perform a basic arithmetic operation such as adding two numbers with just a few button presses. But to add together all of the numbers from 1 to 1,000 would take thousands of button presses and a lot of time—with a near certainty of making a mistake. On the other hand, a computer may be programmed to do this with just a few simple instructions. For example:

Rabu, 17 November 2010

MAWAR

bunga-mawarBunga mawar dengan nama ilmiah Rosaceae merupakan tanaman dari Ordo Rosanales sangatlah pantas menyandang julukan si ”Ratu Bunga” karena hampir semua orang menyukai dan mengenal mawar. Warna bunganya yang cantik menawan dengan aneka ragam warna warni seakan menghidupkan suasana taman menjadi semarak, ditambah lagi pesona harumnya yang semerbak wangi.
Bunga mawar dikenal mempunyai banyak varietas sehingga disebutlah dia Rosaceae atau keluarga mawar mawaran. Kemajuan teknologi semakin membuat keluarga tanaman ini beraneka ragam dengan warna warninya mulai dari merah, ungu, hitam dan bahkan campuran beberapa warna. Disamping itu kelopak bunganya juga semakin variatif, dari yang berkuntum tunggal, ganda sampai yang bertumpuk.

Secara umum, bunga mawar dikelompokkan berdasarkan perawakan dan sifat pertumbuhannya menjadi 4 kelompok besar. Yakni: bunga mawar semak yang banyak ditanam sebagai pagar, mawar kerdil berupa tanaman dalam pot, mawar pohon dan terakhir mawar liana yang tumbuh merambat.

Bagaimana Cara Berkebun Mawar

Menanam bunga ini sangatlah karena bunga ini tidak memerlukan perawatan yang khusus. Bunga ini bisa tumbuh di daerah beriklim panas, sedang bahkan dingin.
Media tanam yang dibutuhkan adalah tanah berhumus dan drainase/pengairan yang baik, dimana bunga ini kurang subur jika ditanam pada media yang terlalu gembur dan berpasir. Penyinaran matahari yang cukup akan membuat pohon ini rajin berbunga dan tumbuh subur.
Bunga Mawar bisa diperbanyak melalui biji, setek, okulasi, cangkokan dan membelah anakan. Cara paling praktis adalah dengan setek.
Disamping penyinaran matahari yang cukup, perlu juga dilakukan pemangkasan secara berkala supaya muncul tunas baru dan jangan lupa beri pupuk perangsang bunga secara teratur. Pemangkasan sebaiknya dilakukan pada musim hujan karena tunas akan segera tumbuh dan kuntum bunga baru akan bermunculan.

Menanam Bunga Mawar Dalam Pot

Menanam mawar dalam pot membutuhkan sedikit ketelatenan caranya adalah sebagai berikut:
  • Pot dari tanah liat, tembikar atau semen cor lebih disukai sedangkan pot dari plastik tidak begitu disyarankan karena tidak berpori dan lembab sehingga akar mudah busuk dan suplai oksigen kurang.
  • Perbandingan Media tanam 1:1:1/4 antara tanah, pupuk kandang dan pasir halus. Bilamana anda cukup telaten, disyarankan untuk mengkukus dulu media tanam agar mikroorganisme pembusuk mati dan mawar terbebas dari penyakit.
  • Diperlukan potongan batu bata atau batu kecil di dasar pot agar kelebihan air siraman dapat segera keluar.
  • Pemotongan akar dan penggantian media tanam setiap 1-2 tahun sekali agar tanaman tumbuh sehat dan subur. Si cantik ini bisa berumur diatas 10 tahun bila anda merawatnya penuh kasih sayang dan bisa berbunga sepanjang tahun.
Bagaimana agar Mawar Potong Tahan Lama?Keindahan dan kecantikan bunga mawar di jambangan akan sirna seiring dengan masa layu bunga, anda bisa memperpanjang waktu lebih lama dengan beberapa tips berikut:
  • Kebanyakan bunga potong menjadi cepat layu karena pembusukan pada bekas pemotongan tangkai bunga, yakni bakteri pembusuk berkembang biak dan menyumbat saluran vaskuler. Berakibat bunga cepat layu karena suplai makanan terhambat. Untuk mengatasinya perlu ditambahkan asam benzoate pada air agar bakteri mati dan pembusukan dapat diperlambat. Dapat pula anda tambahkan 3 tetes cairan pemutih kain per 1 liter air.
  • Bunga potong juga masih membutuhkan nutrisi yang dia dapatkan dari gaya kapiler untuk memperpanjang kesegarannya. Anda bisa menambahkan 1 sdt gula pada 1 liter air perendam. Atau anda bisa menggunakan nutrisi khusus bunga potong yang tersedia di toko bunga potong.
  • Bunga potong akan menyerap air secara maksimal pada pH 3,5-4,5, dan agar tidak menimbulkan dehidrasi anda bisa menurunkan air pada pH ideal dengan menambahkan asam sitrat 200 mg per 1 liter air.
  • Pergunakan vas dari kaca, keramik atau plastik dan hindari penggunaan vas bunga yang terbuat dari logam karena logam mengandung ethylene dan biasanya bunga sensitif terhadap kandungan tersebut.
  • Agar serapan air bisa optimal, anda harus memotong pangkal batang menyerong sehingga didapatkan penampang batang lebih besar. Dengan cara ini maka batang potong lebih optimal untuk menyerap air.
  • Potong daun yang anda anggap tidak perlu sehingga suppy makanan bisa mencukupi.
Simbol Kasih Sayang
Banyak arti dibalik setangkai bunga mawar, yakni dukacita, tulus, sukacita hingga kasih sayang dan makna cinta. Karena keanekaragaman ini, maka kenalilah arti warna keelokan si ratu bunga agar tidak terjadi kesalah pengertian, yakni:
  • Merah: cinta, keberanian, penghargaan
  • Kuning: kegembiraan, kebahagiaan, kebebasan
  • Pink/peach: terima kasih, syukur, kekaguman, penghargaan dan simpati.
  • Putih: penghormatan, kesucian hati, kerahasiaan, pertunangan.
  • Merah & Putih: kebersamaan
  • Hitam: dukacita
Khasiat bunga Mawar.
Dibalik keelokan warna bunga mawar, ternyata juga terkandung khasiat sebagai obat alami.
Bilamana anda sempat pergi jalan jalan ke Bangkok, akan anda jumpai makanan yang terbuat dari bunga mawar. Banyak restoran di bangkok yang menyuguhkan menu andalan dari bahan bunga ini.
Bunga ini aman dikonsumsi dan memiliki beberapa khasiat. Minyak atsiri nya mengandung geraniol dan limonene yang berfungsi sebagai antiseptik, pembunuh jamur candida albican penyebab keputihan dan menambah daya tahan tubuh. Harum aroma bunga mawar juga sering digunakan sebagai aromaterapi yang bersifat menenangkan juga meningkatkan mood.
Daun kelopak bunganya yang kering juga dapat untuk mengharumkan teh. Caranya sangat mudah, anda campurkan sedikit kelopak bunga kering bersama teh dan rebuskan air kemudian saring, anda akan menikmati segarnya teh sambil menghirup aroma bunga mawar yang dapat meningkatkan mood.

Bencana alam

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Rumah roboh akibat Bencana alam di Klaten
Bencana alam adalah konsekuensi dari kombinasi aktivitas alami (suatu peristiwa fisik, seperti letusan gunung, gempa bumi, tanah longsor) dan aktivitas manusia. Karena ketidakberdayaan manusia, akibat kurang baiknya manajemen keadaan darurat, sehingga menyebabkan kerugian dalam bidang keuangan dan struktural, bahkan sampai kematian. Kerugian yang dihasilkan tergantung pada kemampuan untuk mencegah atau menghindari bencana dan daya tahan mereka[1]. Pemahaman ini berhubungan dengan pernyataan: "bencana muncul bila ancaman bahaya bertemu dengan ketidakberdayaan". Dengan demikian, aktivitas alam yang berbahaya tidak akan menjadi bencana alam di daerah tanpa ketidakberdayaan manusia, misalnya gempa bumi di wilayah tak berpenghuni. Konsekuensinya, pemakaian istilah "alam" juga ditentang karena peristiwa tersebut bukan hanya bahaya atau malapetaka tanpa keterlibatan manusia. Besarnya potensi kerugian juga tergantung pada bentuk bahayanya sendiri, mulai dari kebakaran, yang mengancam bangunan individual, sampai peristiwa tubrukan meteor besar yang berpotensi mengakhiri peradaban umat manusia.
Namun demikian pada daerah yang memiliki tingkat bahaya tinggi (hazard) serta memiliki kerentanan/kerawanan (vulnerability) yang juga tinggi tidak akan memberi dampak yang hebat/luas jika manusia yang berada disana memiliki ketahanan terhadap bencana (disaster resilience). Konsep ketahanan bencana merupakan valuasi kemampuan sistem dan infrastruktur-infrastruktur untuk mendeteksi, mencegah & menangani tantangan-tantangan serius yang hadir. Dengan demikian meskipun daerah tersebut rawan bencana dengan jumlah penduduk yang besar jika diimbangi dengan ketetahanan terhadap bencana yang cukup.

HAM

Pengertian, Macam dan Jenis Hak Asasi Manusia / HAM yang Berlaku Umum Global - Pelajaran Ilmu PPKN / PMP Indonesia

Pengertian dan Definisi HAM :
HAM / Hak Asasi Manusia adalah hak yang melekat pada diri setiap manusia sejak awal dilahirkan yang berlaku seumur hidup dan tidak dapat diganggu gugat siapa pun. Sebagai warga negara yang baik kita mesti menjunjung tinggi nilai hak azasi manusia tanpa membeda-bedakan status, golongan, keturunan, jabatan, dan lain sebagainya.
Melanggar HAM seseorang bertentangan dengan hukum yang berlaku di Indonesia. Hak asasi manusia memiliki wadah organisasi yang mengurus permasalahan seputar hak asasi manusia yaitu Komnas HAM. Kasus pelanggaran ham di Indonesia memang masih banyak yang belum terselesaikan / tuntas sehingga diharapkan perkembangan dunia ham di Indonesia dapat terwujud ke arah yang lebih baik. Salah satu tokoh ham di Indonesia adalah Munir yang tewas dibunuh di atas pesawat udara saat menuju Belanda dari Indonesia.
Pembagian Bidang, Jenis dan Macam Hak Asasi Manusia Dunia :
1. Hak asasi pribadi / personal Right
- Hak kebebasan untuk bergerak, bepergian dan berpindah-pndah tempat
- Hak kebebasan mengeluarkan atau menyatakan pendapat
- Hak kebebasan memilih dan aktif di organisasi atau perkumpulan
- Hak kebebasan untuk memilih, memeluk, dan menjalankan agama dan kepercayaan yang diyakini masing-masing
2. Hak asasi politik / Political Right
- Hak untuk memilih dan dipilih dalam suatu pemilihan
- hak ikut serta dalam kegiatan pemerintahan
- Hak membuat dan mendirikan parpol / partai politik dan organisasi politik lainnya
- Hak untuk membuat dan mengajukan suatu usulan petisi
3. Hak azasi hukum / Legal Equality Right
- Hak mendapatkan perlakuan yang sama dalam hukum dan pemerintahan
- Hak untuk menjadi pegawai negeri sipil / pns
- Hak mendapat layanan dan perlindungan hukum
4. Hak azasi Ekonomi / Property Rigths
- Hak kebebasan melakukan kegiatan jual beli
- Hak kebebasan mengadakan perjanjian kontrak
- Hak kebebasan menyelenggarakan sewa-menyewa, hutang-piutang, dll
- Hak kebebasan untuk memiliki susuatu
- Hak memiliki dan mendapatkan pekerjaan yang layak
5. Hak Asasi Peradilan / Procedural Rights
- Hak mendapat pembelaan hukum di pengadilan
- Hak persamaan atas perlakuan penggeledahan, penangkapan, penahanan dan penyelidikan di mata hukum.
6. Hak asasi sosial budaya / Social Culture Right
- Hak menentukan, memilih dan mendapatkan pendidikan
- Hak mendapatkan pengajaran
- Hak untuk mengembangkan budaya yang sesuai dengan bakat dan minat

Rabu, 03 November 2010

tekhnologi informasi dan komunikasi

Add caption
Teknologi Informasi dilihat dari kata penyusunnya adalah teknologi dan informasi. Secara mudahnya teknologi informasi adalah hasil rekayasa manusia terhadap proses penyampaian informasi dari bagian pengirim ke penerima sehingga pengiriman informasi tersebut akan lebih cepat, lebih luas penyebarannya, dan lebih lama penyimpanannya.

[sunting] Sejarah

Pada awal sejarah, manusia bertukar informasi melalui bahasa. Maka bahasa adalah teknologi, bahasa memungkinkan seseorang memahami informasi yang disampaikan oleh orang lain. Tetapi bahasa yang disampaikan dari mulut ke mulut hanya bertahan sebentar saja, yaitu hanya pada saat si pengirim menyampaikan informasi melalui ucapannya itu saja. Setelah ucapan itu selesai, maka informasi yang berada di tangan si penerima itu akan dilupakan dan tidak bisa disimpan lama. Selain itu jangkauan suara juga terbatas. Untuk jarak tertentu, meskipun masih terdengar, informasi yang disampaikan lewat bahasa suara akan terdegradasi bahkan hilang sama sekali.
Setelah itu teknologi penyampaian informasi berkembang melalui gambar. Dengan gambar jangkauan informasi bisa lebih jauh. Gambar ini bisa dibawa-bawa dan disampaikan kepada orang lain. Selain itu informasi yang ada akan bertahan lebih lama. Beberapa gambar peninggalan zaman purba masih ada sampai sekarang sehingga manusia sekarang dapat (mencoba) memahami informasi yang ingin disampaikan pembuatnya.
Ditemukannya alfabet dan angka arabik memudahkan cara penyampaian informasi yang lebih efisien dari cara yang sebelumnya. Suatu gambar yang mewakili suatu peristiwa dibuat dengan kombinasi alfabet, atau dengan penulisan angka, seperti MCMXLIII diganti dengan 1943. Teknologi dengan alfabet ini memudahkan dalam penulisan informasi itu.
Kemudian, teknologi percetakan memungkinkan pengiriman informasi lebih cepat lagi. Teknologi elektronik seperti radio, televisi, komputer mengakibatkan informasi menjadi lebih cepat tersebar di area yang lebih luas dan lebih lama tersimpan



  .